Signed Young modules and simple Specht modules
نویسندگان
چکیده
منابع مشابه
Specht modules and chromatic polynomials
An explicit formula for the chromatic polynomials of certain families of graphs, called ‘bracelets’, is obtained. The terms correspond to irreducible representations of symmetric groups. The theory is developed using the standard bases for the Specht modules of representation theory, and leads to an effective means of calculation. MSC 2000: 05C15, 05C50.
متن کاملGraded Specht Modules
Recently, the first two authors have defined a Z-grading on group algebras of symmetric groups and more generally on the cyclotomic Hecke algebras of type G(l, 1, d). In this paper we explain how to grade Specht modules over these algebras.
متن کاملHoeffding spaces and Specht modules
It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولPermutation resolutions for Specht modules
For every composition λ of a positive integer r , we construct a finite chain complex whose terms are direct sums of permutation modules M for the symmetric group Sr with Young subgroup stabilizers Sμ. The construction is combinatorial and can be carried out over every commutative base ring k. We conjecture that for every partition λ the chain complex has homology concentrated in one degree (at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.11.016